Lowering GTP level increases survival of amino acid starvation but slows growth rate for Bacillus subtilis cells lacking (p)ppGpp.
نویسندگان
چکیده
Bacterial cells sense external nutrient availability to regulate macromolecular synthesis and consequently their growth. In the Gram-positive bacterium Bacillus subtilis, the starvation-inducible nucleotide (p)ppGpp negatively regulates GTP levels, both to resist nutritional stress and to maintain GTP homeostasis during growth. Here, we quantitatively investigated the relationship between GTP level, survival of amino acid starvation, and growth rate when GTP synthesis is uncoupled from its major homeostatic regulator, (p)ppGpp. We analyzed growth and nucleotide levels in cells that lack (p)ppGpp and found that their survival of treatment with a nonfunctional amino acid analog negatively correlates with both growth rate and GTP level. Manipulation of GTP levels modulates the exponential growth rate of these cells in a positive dose-dependent manner, such that increasing the GTP level increases growth rate. However, accumulation of GTP levels above a threshold inhibits growth, suggesting a toxic effect. Strikingly, adenine counteracts GTP stress by preventing GTP accumulation in cells lacking (p)ppGpp. Our results emphasize the importance of maintaining appropriate levels of GTP to maximize growth: cells can survive amino acid starvation by decreasing GTP level, which comes at a cost to growth, while (p)ppGpp enables rapid adjustment to nutritional stress by adjusting GTP level, thus maximizing fitness.
منابع مشابه
Lowering GTP level increases survival of amino acid starvation but slows growth rate of 3
1 2 Lowering GTP level increases survival of amino acid starvation but slows growth rate of 3 Bacillus subtilis cells lacking (p)ppGpp 4 5 RUNNING TITLE 6 Quantitative relationship between GTP and growth 7 8 9 Alycia N. Bittner , Allison Kriel, and Jue D. Wang # 10 11 Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706 12 13 Present address: Department of Biolo...
متن کاملGTP dysregulation in Bacillus subtilis cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes.
The nucleotide (p)ppGpp inhibits GTP biosynthesis in the Gram-positive bacterium Bacillus subtilis. Here we examined how this regulation allows cells to grow in the absence of amino acids. We showed that B. subtilis cells lacking (p)ppGpp, due to either deletions or point mutations in all three (p)ppGpp synthetase genes, yjbM, ywaC, and relA, strongly require supplementation of leucine, isoleuc...
متن کاملDifferential responses of Bacillus subtilis rRNA promoters to nutritional stress.
The in vivo expression levels of four rRNA promoter pairs (rrnp(1)p(2)) of Bacillus subtilis were determined by employing single-copy lacZ fusions integrated at the amyE locus. The rrnO, rrnJ, rrnD, and rrnB promoters displayed unique growth rate regulation and stringent responses. Both lacZ activity and mRNA levels were highest for rrnO under all growth conditions tested, while rrnJ, rrnB, and...
متن کاملPhysiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
Guanosine tetraphosphate (ppGpp) is a key mediator of stringent control, an adaptive response of bacteria to amino acid starvation, and has thus been termed a bacterial alarmone. Previous X-ray crystallographic analysis has provided a structural basis for the transcriptional regulation of RNA polymerase activity by ppGpp in the thermophilic bacterium Thermus thermophilus. Here we investigated t...
متن کاملEvidence that Bacillus subtilis sporulation induced by the stringent response is caused by the decrease in GTP or GDP.
Partial amino acid deprivation of Bacillus subtilis, which evokes the stringent response, initiates sporulation not because the highly phosphorylated guanine nucleotides guanosine-5'-diphosphate-3'-diphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) increase but because GTP decreases. This was shown with a mutant (Myc) partially resistant to mycophenolate, an inhibitor of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 196 11 شماره
صفحات -
تاریخ انتشار 2014